Onionlinks

Onionlinks

Did You Know?

Docy turns out that context is a key part of learning.

1,3-Butadiene

1,3-Butadiene

1,3-Butadieneis the organic compound with the formula (CH2=CH)2. It is a colorless gas that is easily condensed to a liquid. It is important industrially as a monomer in the production of synthetic rubber. The molecule can be viewed as the union of two vinyl groups. It is the simplest conjugated diene.

Although butadiene breaks down quickly in the atmosphere, it is nevertheless found in ambient air in urban and suburban areas as a consequence of its constant emission frommotor vehicles.[4]

The name butadiene can also refer to the isomer, 1,2-butadiene, which is a cumulated diene with structure H2C=C=CH−CH3. This allene has no industrial significance.

1,3-Butadiene
Full structural formula of 1,3-butadiene
Skeletal formula of 1,3-butadiene
Ball-and-stick model of 1,3-butadiene
Names
Preferred IUPAC name

Buta-1,3-diene[1]
Other names

  • Biethylene
  • Erythrene
  • Divinyl
  • Vinylethylene
  • Bivinyl
  • Butadiene
Identifiers
CAS Number
3D model (JSmol)
  • Interactive image[47]
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.138[51]
EC Number 271-039-0
KEGG
PubChemCID
RTECS number EI9275000
UNII
UN number 1010
CompTox Dashboard(EPA)
Properties
C4H6
Molar mass 54.0916 g/mol
Appearance Colourless gas
or refrigerated liquid
Odor Mildly aromatic or gasoline-like
Density
  • 0.6149g/cm3at 25 °C, solid
  • 0.64g/cm3at −6 °C, liquid
Melting point −108.9 °C (−164.0 °F; 164.2 K)
Boiling point −4.4 °C (24.1 °F; 268.8 K)
Solubility in water
1.3g/L at 5℃, 735mg/L at 20
Solubility
Vapor pressure 2.4atm (20°C)[2]
1.4292
Viscosity 0.25cP at 0 °C
Hazards
Main hazards Flammable, irritative, carcinogen
Safety data sheet See: data page
ECSC 0017[56]
R-phrases(outdated) R45 R46 R12
S-phrases(outdated) S45 S53
NFPA 704
NFPA 704 four-colored diamond
4
3
2
Flash point −85 °C (−121 °F; 188 K) liquid flash point[2]
Autoignition temperature
420 °C (788 °F; 693 K)
Explosive limits 2–12%
Lethal dose or concentration (LD, LC):
LD50(median dose)
548mg/kg (rat, oral)
LC50(median concentration)
  • 115,111ppm (mouse)
  • 122,000ppm (mouse, 2h)
  • 126,667ppm (rat, 4h)
  • 130,000ppm (rat, 4h)[3]
LCLo(lowest published)
250,000ppm (rabbit, 30min)[3]
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 1ppm ST 5ppm[2]
REL (Recommended)
Potential occupational carcinogen[2]
IDLH (Immediate danger)
2000ppm[2]
Related compounds
Related Alkenes
and dienes
Isoprene
Chloroprene
Related compounds
Butane
Supplementary data page
Structure and properties
Refractive index(n),
Dielectric constant (εr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
Spectral data
UV, IR, NMR, MS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Yverify[57] (what is☑Y☒N ?)
Infobox references

History

In 1863, the French chemist E. Caventou isolated butadiene from the pyrolysis of amyl alcohol.[5]This hydrocarbon was identified as butadiene in 1886, after Henry Edward Armstrong isolated it from among the pyrolysis products of petroleum.[6]In 1910, the Russian chemist Sergei Lebedev polymerized butadiene and obtained a material with rubber-like properties. This polymer was, however, found to be too soft to replace natural rubber in many applications, notably automobile tires.

The butadiene industry originated in the years leading up to World War II. Many of the belligerent nations realized that in the event of war, they could be cut off from rubber plantations controlled by theBritish Empire, and sought to reduce their dependence on natural rubber.[7]In 1929, Eduard Tschunker and Walter Bock, working for IG Farben in Germany, made a copolymer of styrene and butadiene that could be used in automobile tires. Worldwide production quickly ensued, with butadiene being produced fromgrain alcoholin the Soviet Union and the United States, and from coal-derived acetylene in Germany.

Production

Extraction from C4 hydrocarbons

In the United States, western Europe, and Japan, butadiene is produced as a byproduct of the steam cracking process used to produce ethylene and otheralkenes. When mixed with steam and briefly heated to very high temperatures (often over 900 °C), aliphatic hydrocarbons give up hydrogen to produce a complex mixture of unsaturated hydrocarbons, including butadiene. The quantity of butadiene produced depends on the hydrocarbons used as feed. Light feeds, such as ethane, give primarily ethylene when cracked, but heavier feeds favor the formation of heavier olefins, butadiene, and aromatic hydrocarbons.

Butadiene is typically isolated from the other four-carbonhydrocarbonsproduced in steam cracking by extractive distillation using a polar aprotic solvent such as acetonitrile,N-methyl-2-pyrrolidone, furfural, or dimethylformamide, from which it is then stripped bydistillation.[8]

From dehydrogenation ofn-butane

Butadiene can also be produced by the catalytic dehydrogenation of normal butane (n-butane). The first such post-war commercial plant, producing 65,000tonsper year of butadiene, began operations in 1957 in Houston, Texas.[9]Prior to that, in the 1940s the Rubber Reserve Company, a part of the United States government, constructed several plants in Borger, Texas, Toledo, Ohio, and El Segundo, California to produce synthetic rubber for the war effort as part of the United States Synthetic Rubber Program.[10]Total capacity was 68 KMTA (Kilo Metric Tons per Annum).

Today, butadiene fromn-butane is commercially practiced using theHoudry Catadiene process, which was developed during World War II. It entails treating butane over a alumina and chromia at high temperatures.[11]

From ethanol

In other parts of the world, including South America, Eastern Europe, China, and India, butadiene is also produced fromethanol. While not competitive with steam cracking for producing large volumes of butadiene, lower capital costs make production from ethanol a viable option for smaller-capacity plants. Two processes were in use.

In the single-step process developed by Sergei Lebedev, ethanol is converted to butadiene, hydrogen, and water at 400–450 °C over any of a variety of metal oxide catalysts:[12]

2CH3CH2OH→ CH2=CH−CH=CH2

  • 2

H2O

H2

This process was the basis for theSoviet Union‘s synthetic rubber industry during and after World War II, and it remained in limited use in Russia and other parts of eastern Europe until the end of the 1970s. At the same time this type of manufacture was canceled in Brazil. As of 2017, no butadiene was produced industrially from ethanol.

In the other, two-step process, developed by the Russian emigree chemist Ivan Ostromislensky, ethanol is oxidized to acetaldehyde, which reacts with additional ethanol over a tantalum-promoted porous silica catalyst at 325–350 °C to yield butadiene:[12]

CH3CH2OH + CH3CHO → CH2=CH−CH=CH2

  • 2 H

2O

This process was one of the three used in the United States to produce “government rubber” during World War II, although it is less economical than the butane or butene routes for the large volumes. Still, three plants with a total capacity of 200 KMTA were constructed in the U.S. (Institute, West Virginia, Louisville, Kentucky and Kobuta, Pennsylvania) with start-ups completed in 1943, the Louisville plant initially created butadiene from acetylene generated by an associated Calcium Carbide plant. The process remains in use today in China and India.

From butenes

1,3-Butadiene can also be produced by catalytic dehydrogenation of normal butenes. This method was also used by the U.S. Synthetic Rubber Program (USSRP) duringWorld War II. The process was much more economical than the alcohol or n-butane route but competed with aviation gasoline for available butene molecules (butenes were plentiful thanks to catalytic cracking). The USSRP constructed several plants in Baton Rouge and Lake Charles, Louisiana; Houston, Baytown, and Port Neches, Texas; and Torrance, California.[10]Total annual production was 275 KMTA.

In the 1960s, a Houston company known as “Petro-Tex” patented a process to produce butadiene from normal butenes by oxidative dehydrogenation using a proprietary catalyst. It is unclear if this technology is practiced commercially.[13]

After World War II, the production from butenes became the major type of production in USSR.

For laboratory use

1,3-Butadiene is inconvenient for laboratory use because it is gas. Laboratory procedures have been optimized for its generation from nongaseous precursors. It can be produced by the retro-Diels-Alder reaction of cyclohexene.[14]Sulfolene is a convenient solid storable source for 1,3-butadiene in the laboratory. It releases the diene andsulfur dioxideupon heating.

Uses

Most butadiene is polymerized to produce synthetic rubber. Polybutadiene itself is a very soft, almost liquid material of commercial interest. The copolymers prepared from butadiene and styrene and/or acrylonitrile, such asacrylonitrile butadiene styrene(ABS), acrylonitrile butadiene (NBR) and styrene-butadiene (SBR) are tough and/or elastic. SBR is the material most commonly used for the production of automobile tires.[11]

Smaller amounts of butadiene are used to make the nylon intermediate, adiponitrile, by the addition of a molecule of hydrogen cyanide to each of the double bonds in a process called hydrocyanation developed by DuPont. Other synthetic rubber materials such as chloroprene, and the solvent sulfolane are also manufactured from butadiene. Butadiene is used in the industrial production of 4-vinylcyclohexene via a Diels Alder dimerization reaction.[15]Vinylcyclohexene is a common impurity found in butadiene upon storage due to dimerization. Cyclooctadiene and cyclododecatriene are produced via nickel- or titanium-catalyzed dimerization and trimerization reactions, respectively. Butadiene is also useful in the synthesis of cycloalkanes and cycloalkenes, as it reacts with double and triple carbon-carbon bonds through the Diels-Alder reaction.

Structure, conformation, and stability

Comparison of butadiene (s-trans conformer) and ethylene.

Comparison of butadiene (s-transconformer) and ethylene.

The most stable conformer of 1,3-butadiene is thestransconformation, in which the molecule is planar, with the two pairs of double bonds facing opposite directions. This conformation is most stable because orbital overlap between double bonds is maximized, allowing for maximum conjugation, while steric effects are minimized. Conventionally, thes-transconformation is considered to have a C2-C3 dihedral angle of 180°. In contrast, thescisconformation, in which the dihedral angle is 0°, with the pair of double bonds facing the same direction is approximately 16.5 kJ/mol (3.9 kcal/mol) higher in energy, due to steric hindrance. This geometry is a local energy maximum, so in contrast to thes-transgeometry, it is not a conformer. Thegauchegeometry, in which the double bonds of thes-cisgeometry are twisted to give a dihedral angle of around 38°, is a second conformer that is around 12.0 kJ/mol (2.9 kcal/mol) higher in energy than thes-transconformer. Overall, there is a barrier of 24.8 kJ/mol (5.9 kcal/mol) for isomerization between the two conformers.[16]This increased rotational barrier and strong overall preference for a near-planar geometry is evidence for a delocalized π system and a small degree of partial double bond character in the C-C single bond, in accord with resonance theory.

Despite the high energy of thes-cisconformation, 1,3-butadiene needs to assume this conformation (or one very similar) before it can participate as the four-electron component in concerted cycloaddition reactions like theDiels-Alder reaction.

Similarly, a combined experimental and computational study has found that the double bond of *s-trans-*butadiene has a length of 133.8 pm, while that for ethylene has a length of 133.0 pm. This was taken as evidence of a π-bond weakened and lengthened by delocalization, as depicted by the resonance structures shown below.[17]

A qualitative picture of the molecular orbitals of 1,3-butadiene is readily obtained by applying Hückel theory. (The article on Hückel theory gives a derivation for the butadiene orbitals.)

1,3-Butadiene is also thermodynamically stabilized. While a monosubstituted double bond releases about 30.3 kcal/mol of heat upon hydrogenation, 1,3-butadiene releases slightly less (57.1 kcal/mol) than twice this energy (60.6 kcal/mol), expected for two isolated double bonds. That implies a stabilization energy of 3.5 kcal/mol.[18]Similarly, the hydrogenation of the terminal double bond of 1,4-pentadiene releases 30.1 kcal/mol of heat, while hydrogenation of the terminal double bond of conjugated (E)-1,3-pentadiene releases only 26.5 kcal/mol, implying a very similar value of 3.6 kcal/mol for the stabilization energy.[19]The ~3.5 kcal/mol difference in these heats of hydrogenation can be taken to be the resonance energy of a conjugated diene.

Reactions

The structure of (butadiene)iron tricarbonyl.[22]

The industrial uses illustrate the tendency of butadiene to polymerize. Its susceptibility to 1,4-addition reactions is illustrated by it hydrocyanation. Like many dienes, it undergoes Pd-catalyzed reactions that proceed via allyl complexes.[20]It is a partner in Diels-Alder reactions, e.g. with maleic anhydride to give tetrahydrophthalic anhydride.[21]

Like other dienes, butadiene is a ligand for low-valent metal complexes, e.g. the derivatives Fe(butadiene)(CO)3 and Mo(butadiene)3.

Environmental health and safety

Butadiene is of low acute toxicity. LC50 is 12.5-11.5 vol% for inhalation by rats and mice.[11]

Long-term exposure has been associated with cardiovascular disease, there is a consistent association with leukemia, as well as a significant association with other cancers.[23]

1,3-Butadiene has been designated a Group 1 carcinogen (‘carcinogenic to humans’) by IARC,[24]and has also been listed as a carcinogen by the Agency for Toxic Substances Disease Registry and the US EPA.[25][26]The American Conference of Governmental Industrial Hygienists (ACGIH) lists the chemical as a suspected carcinogen.[26]The Natural Resource Defense Council (NRDC) lists some disease clusters that are suspected to be associated with this chemical.[27]Some researchers have concluded it is the most potent carcinogen in cigarette smoke, twice as potent as the runner up acrylonitrile[28]

1,3-Butadiene is also a suspected human teratogen.[29][30][31]Prolonged and excessive exposure can affect many areas in the human body; blood, brain, eye, heart, kidney, lung, nose and throat have all been shown to react to the presence of excessive 1,3-butadiene.[32]Animal data suggest that women have a higher sensitivity to possible carcinogenic effects of butadiene over men when exposed to the chemical. This may be due to estrogen receptor impacts. While these data reveal important implications to the risks of human exposure to butadiene, more data are necessary to draw conclusive risk assessments. There is also a lack of human data for the effects of butadiene on reproductive and development shown to occur in mice, but animal studies have shown breathing butadiene during pregnancy can increase the number of birth defects, and humans have the same hormone systems as animals.[33]

1,3-Butadiene is recognized as a Highly Reactive Volatile Organic Compound (HRVOC) for its potential to readily form ozone, and as such, emissions of the chemical are highly regulated by TCEQ in parts of the Houston-Brazoria-Galveston Ozone Non-Attainment Area.[1][58]

See also

  • Cyclobutadiene

  • Polybutadiene

  • Hydroxyl-terminated polybutadiene

References

[1]

Citation Link//doi.org/10.1039%2F9781849733069-FP001“Front Matter”.Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 374. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.

Sep 21, 2019, 6:26 AM
[2]

Citation Linkwww.cdc.govNIOSH Pocket Guide to Chemical Hazards. “#0067”. National Institute for Occupational Safety and Health (NIOSH).

Sep 21, 2019, 6:26 AM
[3]

Citation Linkwww.cdc.gov“1,3-Butadiene”.Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).

Sep 21, 2019, 6:26 AM
[4]

Citation Linkwww.epa.gov“1,3-Butadiene”. US Environmental Protection Agency US EPA. Retrieved 2 September 2014.

Sep 21, 2019, 6:26 AM
[5]

Citation Link//doi.org/10.1002%2Fjlac.18631270112Caventou, E. (1863). “Ueber eine mit dem zweifach-gebromten Brombutylen isomere Verbindung und über die bromhaltigen Derivate des Brombutylens”.Justus Liebigs Annalen der Chemie.127: 93–97. doi:10.1002/jlac.18631270112.

Sep 21, 2019, 6:26 AM
[6]

Citation Link//doi.org/10.1039%2FCT8864900074Armstrong, H. E.; Miller, A. K. (1886). “The decomposition and genesis of hydrocarbons at high temperatures. I. The products of the manufacture of gas from petroleum”.J. Chem. Soc.49: 74–93. doi:10.1039/CT8864900074.

Sep 21, 2019, 6:26 AM
[7]

Citation Linkbooks.google.comSimple Things Won’t Save the Earth, J. Robert Hunter

Sep 21, 2019, 6:26 AM
[8]

Citation Linkopenlibrary.orgSun, H.P. Wristers, J.P. (1992). Butadiene. In J.I. Kroschwitz (Ed.),Encyclopedia of Chemical Technology, 4th ed., vol. 4, pp. 663–690. New York: John Wiley & Sons.

Sep 21, 2019, 6:26 AM
[9]

Citation Linkopenlibrary.orgBeychok, M.R. and Brack, W.J., “First Postwar Butadiene Plant”,Petroleum Refiner, June 1957.

Sep 21, 2019, 6:26 AM
[10]

Citation Linkopenlibrary.orgHerbert, Vernon, “Synthetic Rubber: A Project That Had to Succeed”, Greenwood Press, 1985, ISBN 0-313-24634-3

Sep 21, 2019, 6:26 AM
[11]

Citation Link//doi.org/10.1002%2F14356007.a04_431.pub2J. Grub, E. Löser (2012). “Butadiene”.Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a04_431.pub2.CS1 maint: uses authors parameter (link)

Sep 21, 2019, 6:26 AM
[12]

Citation Linkopenlibrary.orgKirshenbaum, I. (1978). Butadiene. In M. Grayson (Ed.),Encyclopedia of Chemical Technology, 3rd ed., vol. 4, pp. 313–337. New York: John Wiley & Sons.

Sep 21, 2019, 6:26 AM
[13]

Citation Linkwww.researchgate.net“BUTADIENE VIA OXIDATIVE DEHYDROGENATION”.ResearchGate. Retrieved 1 June 2019.

Sep 21, 2019, 6:26 AM
[14]

Citation Link//doi.org/10.15227%2Forgsyn.017.0025E. B. Hershberg, John R. Ruhoff (1937). “1,3-Butadiene”.Org. Synth.17: 25. doi:10.15227/orgsyn.017.0025.CS1 maint: uses authors parameter (link)

Sep 21, 2019, 6:26 AM
[15]

Citation Linkmonographs.iarc.fr“4-Vinylcyclohexene” (PDF). IARC. Retrieved 19 April 2009.

Sep 21, 2019, 6:26 AM
[16]

Citation Linkportal.issn.orgFeller, David; Craig, Norman C. (26 February 2009). “High Level ab Initio Energies and Structures for the Rotamers of 1,3-Butadiene”.The Journal of Physical Chemistry A.113(8): 1601–1607. doi:10.1021/jp8095709. ISSN 1089-5639.

Sep 21, 2019, 6:26 AM
[17]

Citation Linkportal.issn.orgCraig, Norman C.; Groner, Peter; McKean, Donald C. (1 June 2006). “Equilibrium Structures for Butadiene and Ethylene: Compelling Evidence for Π-Electron Delocalization in Butadiene”.The Journal of Physical Chemistry A.110(23): 7461–7469. doi:10.1021/jp060695b. ISSN 1089-5639.

Sep 21, 2019, 6:26 AM
[18]

Citation Link//www.worldcat.org/oclc/61448218C., Vollhardt, K. Peter (2007).Organic chemistry : structure and function. Schore, Neil Eric, 1948- (5th ed.). New York: W.H. Freeman. ISBN 978-0716799498. OCLC 61448218.

Sep 21, 2019, 6:26 AM
[19]

Citation Link//www.worldcat.org/oclc/499070891937-, Carey, Francis A. (2002).Organic chemistry(5th ed.). London: McGraw-Hill. ISBN 978-0071151498. OCLC 49907089.

Sep 21, 2019, 6:26 AM
[20]

Citation Link//doi.org/10.15227%2Forgsyn.067.0105J. E. Nyström, T. Rein, J. E. Bäckvall (1989). “1,4-Functionalization of 1,3-Dienes via Palladium-Catalyzed Chloroacetoxylation and Allylic Amination: 1-Acetoxy-4-diethylamino-2-butene and 1-Acetoxy-4-benzylamino-2-butene”.Org. Synth.67: 105. doi:10.15227/orgsyn.067.0105.CS1 maint: uses authors parameter (link)

Sep 21, 2019, 6:26 AM
[21]

Citation Link//doi.org/10.15227%2Forgsyn.030.0093Arthur C. Cope, Elbert C. Herrick (1950). “cis-Δ4-Tetrahydrophthalic Anhydride”.Org. Synth.50: 93. doi:10.15227/orgsyn.030.0093.CS1 maint: uses authors parameter (link)

Sep 21, 2019, 6:26 AM
[22]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/21588810Reiss, Guido J. (2010). “Redetermination of (η4-s-cis-1,3-butadiene)tricarbonyliron(0)”.Acta Crystallographica Section E.66(11): m1369. doi:10.1107/S1600536810039218. PMC 3009352. PMID 21588810.

Sep 21, 2019, 6:26 AM
[23]

Citation Linkwww.npi.gov.au“NPI sheet”. Archived from the original on 22 December 2003. Retrieved 10 January 2006.

Sep 21, 2019, 6:26 AM
[24]

Citation Linkportal.issn.orgGrosse, Yann; Baan, Robert; Straif, Kurt; Secretan, Béatrice; El Ghissassi, Fatiha; Bouvard, Véronique; Altieri, Andrea; Cogliano, Vincent (2008). “Carcinogenicity of 1,3-butadiene, ethylene oxide, vinyl chloride, vinyl fluoride, and vinyl bromide”.The Lancet Oncology.8(8): 679–680. doi:10.1016/S1470-2045(07)70235-8. ISSN 1470-2045.

Sep 21, 2019, 6:26 AM
[25]

Citation Linkwww.atsdr.cdc.gov“ATSDR – Toxic Substances – 1,3-Butadiene”.

Sep 21, 2019, 6:26 AM
[26]

Citation Linkwww.osha.govHealth Effects https://www.osha.gov/SLTC/butadiene/index.html

Sep 21, 2019, 6:26 AM
[27]

Citation Linkwww.nrdc.org“Disease Clusters Spotlight the Need to Protect People from Toxic Chemicals”.

Sep 21, 2019, 6:26 AM
[28]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/14660781Fowles, J; Dybing, E (4 September 2003). “Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke”.Institute of Environmental Science and Research.12(4): 424–430. doi:10.1136/tc.12.4.424. PMC 1747794. PMID 14660781. Retrieved 12 October 2014.

Sep 21, 2019, 6:26 AM
[29]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/2205484Landrigan, PJ (1990). “Critical assessment of epidemiologic studies on the human carcinogenicity of 1,3-butadiene”.Environmental Health Perspectives.86: 143–147. doi:10.1289/ehp.9086143. PMC 1567758. PMID 2205484.

Sep 21, 2019, 6:26 AM
[30]

Citation Linkntp.niehs.nih.gov“1,3-Butadiene CAS No. 106-99-0” (PDF).Report on Carcinogens(11th ed.). Archived from the original (PDF) on 8 May 2009.

Sep 21, 2019, 6:26 AM
[31]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/7859343Melnick, Ronald L.; Kohn, Michael C. (1995). “Mechanistic data indicate that 1,3-butadiene is a human carcinogen” (PDF).Carcinogenesis.16(2): 157–63. doi:10.1093/carcin/16.2.157. PMID 7859343.

Sep 21, 2019, 6:26 AM
[32]

Citation Linkwww.environment-agency.gov.uk“Archived copy”. Archived from the original on 3 February 2011. Retrieved 20 August 2010.CS1 maint: archived copy as title (link)

Sep 21, 2019, 6:26 AM
[33]

Citation Linkwww.epa.govEPA website

Sep 21, 2019, 6:26 AM
[34]

Citation Linkwww.commonchemistry.org106-99-0

Sep 21, 2019, 6:27 AM
[35]

Citation Linkchemapps.stolaf.eduInteractive image

Sep 21, 2019, 6:27 AM
[36]

Citation Linkwww.ebi.ac.ukCHEBI:39478

Sep 21, 2019, 6:27 AM
[37]

Citation Linkwww.ebi.ac.ukChEMBL537970

Sep 21, 2019, 6:27 AM
[38]

Citation Linkwww.chemspider.com7557

Sep 21, 2019, 6:27 AM
[39]

Citation Linkwww.kegg.jpC16450

Sep 21, 2019, 6:27 AM
[40]

Citation Linkpubchem.ncbi.nlm.nih.gov7845

Sep 21, 2019, 6:27 AM
[41]

Citation Linkfdasis.nlm.nih.govJSD5FGP5VD

Sep 21, 2019, 6:27 AM
[42]

Citation Linkcomptox.epa.govDTXSID3020203

Sep 21, 2019, 6:27 AM
[43]

Citation Linkwww.atsdr.cdc.gov1,3-Butadiene

Sep 21, 2019, 6:27 AM
[44]

Citation Linkwww.cdc.gov1,3-Butadiene

Sep 21, 2019, 6:27 AM
[45]

Citation Linkweb.archive.orgNational Pollutant Inventory – 1,3-Butadiene

Sep 21, 2019, 6:27 AM
[46]

Citation Linkwww.commonchemistry.org106-99-0

Sep 21, 2019, 6:27 AM
[47]

Citation Linkchemapps.stolaf.eduInteractive image

Sep 21, 2019, 6:27 AM
[48]

Citation Linkwww.ebi.ac.ukCHEBI:39478

Sep 21, 2019, 6:27 AM
[49]

Citation Linkwww.ebi.ac.ukChEMBL537970

Sep 21, 2019, 6:27 AM
[50]

Citation Linkwww.chemspider.com7557

Sep 21, 2019, 6:27 AM
[51]

Citation Linkecha.europa.eu100.003.138

Sep 21, 2019, 6:27 AM
[52]

Citation Linkwww.kegg.jpC16450

Sep 21, 2019, 6:27 AM
[53]

Citation Linkpubchem.ncbi.nlm.nih.gov7845

Sep 21, 2019, 6:27 AM
[54]

Citation Linkfdasis.nlm.nih.govJSD5FGP5VD

Sep 21, 2019, 6:27 AM
[55]

Citation Linkcomptox.epa.govDTXSID3020203

Sep 21, 2019, 6:27 AM
[56]

Citation Linkwww.inchem.orgECSC 0017

Sep 21, 2019, 6:27 AM
[57]

Citation Linken.wikipedia.orgverify

Sep 21, 2019, 6:27 AM
[58]

Citation Linkwww.tceq.texas.gov[1]

Sep 21, 2019, 6:27 AM
[59]

Citation Linkdoi.org10.1039/9781849733069-FP001

Sep 21, 2019, 6:27 AM
[60]

Citation Linkwww.cdc.gov“#0067”

Sep 21, 2019, 6:27 AM
[61]

Citation Linkwww.cdc.gov“1,3-Butadiene”

Sep 21, 2019, 6:27 AM
[62]

Citation Linkwww.epa.gov“1,3-Butadiene”

Sep 21, 2019, 6:27 AM
[63]

Citation Linkzenodo.org“Ueber eine mit dem zweifach-gebromten Brombutylen isomere Verbindung und über die bromhaltigen Derivate des Brombutylens”

Sep 21, 2019, 6:27 AM
[64]

Citation Linkdoi.org10.1002/jlac.18631270112

Sep 21, 2019, 6:27 AM
[65]

Citation Linkzenodo.org“The decomposition and genesis of hydrocarbons at high temperatures. I. The products of the manufacture of gas from petroleum”

Sep 21, 2019, 6:27 AM
[66]

Citation Linkdoi.org10.1039/CT8864900074

Sep 21, 2019, 6:27 AM
[67]

Citation Linkbooks.google.comSimple Things Won’t Save the Earth

Sep 21, 2019, 6:27 AM
[68]

Citation Linkdoi.org10.1002/14356007.a04_431.pub2

Sep 21, 2019, 6:27 AM
[69]

Citation Linkwww.researchgate.net“BUTADIENE VIA OXIDATIVE DEHYDROGENATION”

Sep 21, 2019, 6:27 AM
[70]

Citation Linkdoi.org10.15227/orgsyn.017.0025

Sep 21, 2019, 6:27 AM
[71]

Citation Linkmonographs.iarc.fr“4-Vinylcyclohexene”

Sep 21, 2019, 6:27 AM
[72]

Citation Linkdoi.org10.1021/jp8095709

Sep 21, 2019, 6:27 AM
[73]

Citation Linkwww.worldcat.org1089-5639

Sep 21, 2019, 6:27 AM
[74]

Citation Linkdoi.org10.1021/jp060695b

Sep 21, 2019, 6:27 AM
[75]

Citation Linkwww.worldcat.org1089-5639

Sep 21, 2019, 6:27 AM
[76]

Citation Linkwww.worldcat.org61448218

Sep 21, 2019, 6:27 AM
[77]

Citation Linkwww.worldcat.org49907089

Sep 21, 2019, 6:27 AM
[78]

Citation Linkdoi.org10.15227/orgsyn.067.0105

Sep 21, 2019, 6:27 AM
[79]

Citation Linkdoi.org10.15227/orgsyn.030.0093

Sep 21, 2019, 6:27 AM
[80]

Citation Linkwww.ncbi.nlm.nih.gov“Redetermination of (η4-s-cis-1,3-butadiene)tricarbonyliron(0)”

Sep 21, 2019, 6:27 AM
[81]

Citation Linkdoi.org10.1107/S1600536810039218

Sep 21, 2019, 6:27 AM
[82]

Citation Linkwww.ncbi.nlm.nih.gov3009352

Sep 21, 2019, 6:27 AM
[83]

Citation Linkwww.ncbi.nlm.nih.gov21588810

Sep 21, 2019, 6:27 AM
[84]

Citation Linkweb.archive.org“NPI sheet”

Sep 21, 2019, 6:27 AM
[85]

Citation Linkwww.npi.gov.authe original

Sep 21, 2019, 6:27 AM
[86]

Citation Linkdoi.org10.1016/S1470-2045(07)70235-8

Sep 21, 2019, 6:27 AM
[87]

Citation Linkwww.worldcat.org1470-2045

Sep 21, 2019, 6:27 AM
[88]

Citation Linkwww.atsdr.cdc.gov“ATSDR – Toxic Substances – 1,3-Butadiene”

Sep 21, 2019, 6:27 AM
[89]

Citation Linkwww.osha.govhttps://www.osha.gov/SLTC/butadiene/index.html

Sep 21, 2019, 6:27 AM
[90]

Citation Linkwww.nrdc.org“Disease Clusters Spotlight the Need to Protect People from Toxic Chemicals”

Sep 21, 2019, 6:27 AM
[91]

Citation Linktobaccocontrol.bmj.com“Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke”

Sep 21, 2019, 6:27 AM
[92]

Citation Linkdoi.org10.1136/tc.12.4.424

Sep 21, 2019, 6:27 AM
[93]

Citation Linkwww.ncbi.nlm.nih.gov1747794

Sep 21, 2019, 6:27 AM
[94]

Citation Linkwww.ncbi.nlm.nih.gov14660781

Sep 21, 2019, 6:27 AM
[95]

Citation Linkwww.ncbi.nlm.nih.gov“Critical assessment of epidemiologic studies on the human carcinogenicity of 1,3-butadiene”

Sep 21, 2019, 6:27 AM
[96]

Citation Linkdoi.org10.1289/ehp.9086143

Sep 21, 2019, 6:27 AM
[97]

Citation Linkwww.ncbi.nlm.nih.gov1567758

Sep 21, 2019, 6:27 AM
[98]

Citation Linkwww.ncbi.nlm.nih.gov2205484

Sep 21, 2019, 6:27 AM
[99]

Citation Linkweb.archive.org“1,3-Butadiene CAS No. 106-99-0”

Sep 21, 2019, 6:27 AM
[100]

Citation Linkntp.niehs.nih.govthe original

Sep 21, 2019, 6:27 AM
[101]

Citation Linkzenodo.org“Mechanistic data indicate that 1,3-butadiene is a human carcinogen”

Sep 21, 2019, 6:27 AM
[102]

Citation Linkdoi.org10.1093/carcin/16.2.157

Sep 21, 2019, 6:27 AM
[103]

Citation Linkwww.ncbi.nlm.nih.gov7859343

Sep 21, 2019, 6:27 AM
[104]

Citation Linkweb.archive.org“Archived copy”

Sep 21, 2019, 6:27 AM
[105]

Citation Linkwww.environment-agency.gov.ukthe original

Sep 21, 2019, 6:27 AM
[106]

Citation Linkwww.epa.govEPA website

Sep 21, 2019, 6:27 AM
[107]

Citation Linkwww.atsdr.cdc.gov1,3-Butadiene

Sep 21, 2019, 6:27 AM
[108]

Citation Linkwww.cdc.gov1,3-Butadiene

Sep 21, 2019, 6:27 AM
[109]

Citation Linkweb.archive.orgNational Pollutant Inventory – 1,3-Butadiene

Sep 21, 2019, 6:27 AM
[110]

Citation Linken.wikipedia.orgThe original version of this page is from Wikipedia, you can edit the page right here on Everipedia.Text is available under the Creative Commons Attribution-ShareAlike License.Additional terms may apply.See everipedia.org/everipedia-termsfor further details.Images/media credited individually (click the icon for details).

Sep 21, 2019, 6:27 AM