Onionlinks

Onionlinks

Did You Know?

We design Docy for the readers, optimizing not for page views or engagement

β-Lactamase inhibitor

Beta-lactamases are a family of enzymes involved in bacterial resistance tobeta-lactam antibiotics. They act by breaking the beta-lactam ring that allows penicillin-like antibiotics to work. Strategies for combating this form of resistance have included the development of new beta-lactam antibiotics that are more resistant to cleavage and the development of the class of enzyme inhibitors calledbeta-lactamase inhibitors.[1]Although β-lactamase inhibitors have little antibiotic activity of their own,[2]they prevent bacterial degradation of beta-lactam antibiotics and thus extend the range of bacteria the drugs are effective against.

Medical uses

The most important use of beta-lactamase inhibitors is in the treatment of infections known or believed to be caused by gram-negative bacteria, as beta-lactamase production is an important contributor to beta-lactam resistance in these pathogens. In contrast, most beta-lactam resistance in gram-positive bacteria is due to variations in penicillin-binding proteins that lead to reduced binding to the beta-lactam.[3][4]The gram-positive pathogenStaphylococcus aureusproduces beta-lactamases, but beta-lactamase inhibitors play a lesser role in treatment of these infections because the most resistant strains (methicillin-resistantStaphylococcus aureus) also use variant penicillin-binding proteins.[5][6]

Mechanism of action

The Ambler classification system groups known beta-lactamase enzymes into four groups according to sequence homology and presumed phylogenetic relationships. Classes A, C and D cleave beta-lactams by a multi-step mechanism analogous to the mechanism of serine proteases. Upon binding, a serine hydroxyl group in the beta-lactamase active site forms a transient covalent bond to the beta-lactam ring carbonyl group, cleaving the beta-lactam ring in the process. In a second step, nucleophilic attack by a water molecule cleaves the covalent bond between the enzyme and the carbonyl group of the erstwhile beta-lactam. This allows the degraded beta-lactam to diffuse away and frees up the enzyme to process additional beta-lactam molecules.

Currently available beta-lactamase inhibitors are effective against Ambler Class A beta-lactamases (tazobactam, clavulanate, and sulbactam) or against Ambler Class A, C and some Class D beta-lactamases (avibactam). Like beta-lactam antibiotics, they are processed by beta-lactamases to form an initial covalent intermediate. Unlike the case of beta-lactam antibiotics, the inhibitors act as suicide substrates (tazobactam and sulbactam) which ultimately leads to the degradation of the beta-lactamase[7]. Avibactam on the other hand does not contain a beta-lactam ring (non beta-lactam beta-lactamase inhibitor), and instead binds reversibly.[8][9]

Ambler Class B beta-lactamases cleave beta-lactams by a mechanism similar to that of metalloproteases. As no covalent intermediate is formed, the mechanism of action of marketed beta-lactamase inhibitors is not applicable. Thus the spread of bacterial strains expressing metallo beta-lactamases such as the New Delhi metallo-beta-lactamase 1 has engendered considerable concern.[10]

Commonly used agents

Currently marketed β-lactamase inhibitors are not sold as individual drugs. Instead they are co-formulated with a β-lactam antibiotic with a similar serum half-life. This is done not only for dosing convenience, but also to minimize resistance development that might occur as a result of varying exposure to one or the other drug. The main classes of β-lactam antibiotics used to treat gram-negative bacterial infections include (in approximate order of intrinsic resistance to cleavage by β-lactamases) penicillins (especially aminopenicillins and ureidopenicillins), 3rd generation cephalosporins, and carbapenems. Individual β-lactamase variants may target one or many of these drug classes, and only a subset will be inhibited by a given β-lactamase inhibitor.[9]β-lactamase inhibitors expand the useful spectrum of these β-lactam antibiotics by inhibiting the β-lactamase enzymes produced by bacteria to deactivate them.[11]

  • β-lactamase inhibitors with a β-lactam core: Tebipenem is the first carbapenem to be administered orally in the form of tebipenem-pivoxil. Structural and kinetic studies of tebipenem is available withM. tuberculosisbeta-lactamase (BlaC).[12]Clavulanic acid or clavulanate, usually combined with amoxicillin (Augmentin) or ticarcillin (Timentin) Sulbactam, usually combined with ampicillin (Unasyn) or cefoperazone (Sulperazon) Tazobactam, usually combined with piperacillin (Zosyn and Tazocin)

  • β-lactamase inhibitors without a β-lactam core: Avibactam, approved in combination with ceftazidime (Avycaz), currently undergoing clinical trials for combination with ceftaroline Relebactam, used in combination with imipenem/cilastatin (Recarbrio).[13][14]Vaborbactam, used in combination with meropenem (Vabomere)[15]

Beta-lactamase producing bacteria

Bacteria that can produce beta-lactamases include, but are not limited to:

  • StaphylococcusMRSA(Methicillin-resistant Staphylococcus aureus)

  • Enterobacteriaceae:Klebsiella pneumoniaeCitrobacterProteus vulgarisMorganellaSalmonellaShigellaEscherichia coli

  • Haemophilus influenzae

  • Neisseria gonorrhoeae

  • Pseudomonas aeruginosa

  • Mycobacterium tuberculosis

Research

Some bacteria can produce extended spectrum β-lactamases (ESBLs) making the infection more difficult to treat and conferring additional resistance to penicillins, cephalosporins, and monobactams.[16]Boronic acid derivatives are currently under vast and extensive research as novel active site inhibitors for beta-lactamases because they contain a site that mimics the transition state that beta-lactams go through when undergoing hydrolysis via beta-lactamases. They have been found generally to fit well into the active site of many beta-lactamases and have the convenient property of being unable to be hydrolysed, and therefore rendered useless. This is a favorable drug design over many clinically used competing agents, because most of them, such as clavulanic acid, become hydrolysed, and are therefore only useful for a finite period of time. This generally causes the need for a higher concentration of competitive inhibitor than would be necessary in an unhydrolyzable inhibitor. Different boronic acid derivatives have the potential to be tailored to the many different isoforms of beta-lactamases, and therefore have the potential to reestablish potency of beta-lactam antibiotics.[17]

References

[1]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/11697463Essack SY (October 2001). “The development of beta-lactam antibiotics in response to the evolution of beta-lactamases”.Pharmaceutical Research.18(10): 1391–9. doi:10.1023/a:1012272403776. PMID 11697463.

Sep 30, 2019, 1:35 AM
[2]

Citation Linkwww.fhsu.edu“Beta-Lactamase Inhibitors”. Department of Nursing of the Fort Hays State University College of Health and Life Sciences. October 2000. Archived from the original on 2007-09-27. Retrieved 2007-08-17.

Sep 30, 2019, 1:35 AM
[3]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/8257121Georgopapadakou NH (October 1993). “Penicillin-binding proteins and bacterial resistance to beta-lactams”.Antimicrobial Agents and Chemotherapy.37(10): 2045–53. doi:10.1128/aac.37.10.2045. PMC 192226. PMID 8257121.

Sep 30, 2019, 1:35 AM
[4]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/18248419Zapun A, Contreras-Martel C, Vernet T (March 2008). “Penicillin-binding proteins and beta-lactam resistance”.FEMS Microbiology Reviews.32(2): 361–85. doi:10.1111/j.1574-6976.2007.00095.x. PMID 18248419.

Sep 30, 2019, 1:35 AM
[5]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/25309145Curello J, MacDougall C (July 2014). “Beyond Susceptible and Resistant, Part II: Treatment of Infections Due to Gram-Negative Organisms Producing Extended-Spectrum β-Lactamases”.The Journal of Pediatric Pharmacology and Therapeutics.19(3): 156–64. doi:10.5863/1551-6776-19.3.156 (inactive 2019-08-20). PMC 4187532. PMID 25309145.

Sep 30, 2019, 1:35 AM
[6]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/22894618Wolter DJ, Lister PD (2013). “Mechanisms of β-lactam resistance among Pseudomonas aeruginosa”.Current Pharmaceutical Design.19(2): 209–22. doi:10.2174/13816128130203. PMID 22894618.

Sep 30, 2019, 1:35 AM
[7]

Citation Link//www.worldcat.org/oclc/987051883Patrick, Graham L. (2017).An introduction to medicinal chemistry(6th ed.). Oxford, United Kingdom. ISBN 9780198749691. OCLC 987051883.

Sep 30, 2019, 1:35 AM
[8]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/23439634Lahiri SD, Mangani S, Durand-Reville T, Benvenuti M, De Luca F, Sanyal G, Docquier JD (June 2013). “Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-lactamases”.Antimicrobial Agents and Chemotherapy.57(6): 2496–505. doi:10.1128/AAC.02247-12. PMC 3716117. PMID 23439634.

Sep 30, 2019, 1:35 AM
[9]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/20065329Drawz SM, Bonomo RA (January 2010). “Three decades of beta-lactamase inhibitors”.Clinical Microbiology Reviews.23(1): 160–201. doi:10.1128/CMR.00037-09. PMC 2806661. PMID 20065329.

Sep 30, 2019, 1:35 AM
[10]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/25403666Biedenbach D, Bouchillon S, Hackel M, Hoban D, Kazmierczak K, Hawser S, Badal R (February 2015). “Dissemination of NDM metallo-β-lactamase genes among clinical isolates of Enterobacteriaceae collected during the SMART global surveillance study from 2008 to 2012”.Antimicrobial Agents and Chemotherapy.59(2): 826–30. doi:10.1128/AAC.03938-14. PMC 4335866. PMID 25403666.

Sep 30, 2019, 1:35 AM
[11]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/3052984Watson ID, Stewart MJ, Platt DJ (September 1988). “Clinical pharmacokinetics of enzyme inhibitors in antimicrobial chemotherapy”.Clinical Pharmacokinetics.15(3): 133–64. doi:10.2165/00003088-198815030-00001. PMID 3052984.

Sep 30, 2019, 1:35 AM
[12]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/24846409Hazra S, Xu H, Blanchard JS (June 2014). “Tebipenem, a new carbapenem antibiotic, is a slow substrate that inhibits the β-lactamase from Mycobacterium tuberculosis”.Biochemistry.53(22): 3671–8. doi:10.1021/bi500339j. PMC 4053071. PMID 24846409.

Sep 30, 2019, 1:35 AM
[13]

Citation Linkwww.fda.gov“FDA approves new treatment for complicated urinary tract and complicated intra-abdominal infections”. Food and Drug Administration. July 17, 2019.

Sep 30, 2019, 1:35 AM
[14]

Citation Linkadisinsight.springer.com“Cilastatin/imipenem/relebactam — AdisInsight”. Springer International Publishing AG. Retrieved 29 April 2016.

Sep 30, 2019, 1:35 AM
[15]

Citation Linkwww.fda.gov“FDA approves new antibacterial drug” (Press release). Food and Drug Administration. August 29, 2017.

Sep 30, 2019, 1:35 AM
[16]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/8665470Livermore DM (October 1995). “beta-Lactamases in laboratory and clinical resistance”.Clinical Microbiology Reviews.8(4): 557–84. doi:10.1128/cmr.8.4.557. PMC 172876. PMID 8665470.

Sep 30, 2019, 1:35 AM
[17]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/23902256Leonard DA, Bonomo RA, Powers RA (November 2013). “Class D β-lactamases: a reappraisal after five decades”.Accounts of Chemical Research.46(11): 2407–15. doi:10.1021/ar300327a. PMC 4018812. PMID 23902256.

Sep 30, 2019, 1:35 AM
[18]

Citation Link//www.ncbi.nlm.nih.gov/pmc/articles/PMC3448018“NXL104 irreversibly inhibits the β-lactamase from Mycobacterium tuberculosis”

Sep 30, 2019, 1:35 AM
[19]

Citation Link//doi.org/10.1021%2Fbi300508r10.1021/bi300508r

Sep 30, 2019, 1:35 AM
[20]

Citation Link//www.ncbi.nlm.nih.gov/pmc/articles/PMC34480183448018

Sep 30, 2019, 1:35 AM
[21]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/2258768822587688

Sep 30, 2019, 1:35 AM
[22]

Citation Link//www.ncbi.nlm.nih.gov/pmc/articles/PMC3837893“Can inhibitor-resistant substitutions in the Mycobacterium tuberculosis β-Lactamase BlaC lead to clavulanate resistance?: a biochemical rationale for the use of β-lactam-β-lactamase inhibitor combinations”

Sep 30, 2019, 1:35 AM
[23]

Citation Link//doi.org/10.1128%2FAAC.01253-1310.1128/AAC.01253-13

Sep 30, 2019, 1:35 AM
[24]

Citation Link//www.ncbi.nlm.nih.gov/pmc/articles/PMC38378933837893

Sep 30, 2019, 1:35 AM
[25]

Citation Link//www.ncbi.nlm.nih.gov/pubmed/2406087624060876

Sep 30, 2019, 1:35 AM
[26]

Citation Linkdoi.org10.1023/a:1012272403776

Sep 30, 2019, 1:35 AM
[27]

Citation Linkwww.ncbi.nlm.nih.gov11697463

Sep 30, 2019, 1:35 AM
[28]

Citation Linkweb.archive.org“Beta-Lactamase Inhibitors”

Sep 30, 2019, 1:35 AM
[29]

Citation Linkwww.fhsu.eduthe original

Sep 30, 2019, 1:35 AM
[30]

Citation Linkwww.ncbi.nlm.nih.gov“Penicillin-binding proteins and bacterial resistance to beta-lactams”

Sep 30, 2019, 1:35 AM
[31]

Citation Linkdoi.org10.1128/aac.37.10.2045

Sep 30, 2019, 1:35 AM
[32]

Citation Linkwww.ncbi.nlm.nih.gov192226

Sep 30, 2019, 1:35 AM
[33]

Citation Linkwww.ncbi.nlm.nih.gov8257121

Sep 30, 2019, 1:35 AM
[34]

Citation Linkdoi.org10.1111/j.1574-6976.2007.00095.x

Sep 30, 2019, 1:35 AM
[35]

Citation Linkwww.ncbi.nlm.nih.gov18248419

Sep 30, 2019, 1:35 AM
[36]

Citation Linkwww.ncbi.nlm.nih.gov“Beyond Susceptible and Resistant, Part II: Treatment of Infections Due to Gram-Negative Organisms Producing Extended-Spectrum β-Lactamases”

Sep 30, 2019, 1:35 AM
[37]

Citation Linkdoi.org10.5863/1551-6776-19.3.156

Sep 30, 2019, 1:35 AM
[38]

Citation Linkwww.ncbi.nlm.nih.gov4187532

Sep 30, 2019, 1:35 AM
[39]

Citation Linkwww.ncbi.nlm.nih.gov25309145

Sep 30, 2019, 1:35 AM
[40]

Citation Linkdoi.org10.2174/13816128130203

Sep 30, 2019, 1:35 AM
[41]

Citation Linkwww.ncbi.nlm.nih.gov22894618

Sep 30, 2019, 1:35 AM
[42]

Citation Linkwww.worldcat.org987051883

Sep 30, 2019, 1:35 AM
[43]

Citation Linkwww.ncbi.nlm.nih.gov“Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-lactamases”

Sep 30, 2019, 1:35 AM
[44]

Citation Linkdoi.org10.1128/AAC.02247-12

Sep 30, 2019, 1:35 AM
[45]

Citation Linkwww.ncbi.nlm.nih.gov3716117

Sep 30, 2019, 1:35 AM
[46]

Citation Linkwww.ncbi.nlm.nih.gov23439634

Sep 30, 2019, 1:35 AM
[47]

Citation Linkwww.ncbi.nlm.nih.gov“Three decades of beta-lactamase inhibitors”

Sep 30, 2019, 1:35 AM
[48]

Citation Linkdoi.org10.1128/CMR.00037-09

Sep 30, 2019, 1:35 AM
[49]

Citation Linkwww.ncbi.nlm.nih.gov2806661

Sep 30, 2019, 1:35 AM
[50]

Citation Linkwww.ncbi.nlm.nih.gov20065329

Sep 30, 2019, 1:35 AM
[51]

Citation Linkwww.ncbi.nlm.nih.gov“Dissemination of NDM metallo-β-lactamase genes among clinical isolates of Enterobacteriaceae collected during the SMART global surveillance study from 2008 to 2012”

Sep 30, 2019, 1:35 AM
[52]

Citation Linkdoi.org10.1128/AAC.03938-14

Sep 30, 2019, 1:35 AM
[53]

Citation Linkwww.ncbi.nlm.nih.gov4335866

Sep 30, 2019, 1:35 AM
[54]

Citation Linkwww.ncbi.nlm.nih.gov25403666

Sep 30, 2019, 1:35 AM
[55]

Citation Linkdoi.org10.2165/00003088-198815030-00001

Sep 30, 2019, 1:35 AM
[56]

Citation Linkwww.ncbi.nlm.nih.gov3052984

Sep 30, 2019, 1:35 AM
[57]

Citation Linkwww.ncbi.nlm.nih.gov“Tebipenem, a new carbapenem antibiotic, is a slow substrate that inhibits the β-lactamase from Mycobacterium tuberculosis”

Sep 30, 2019, 1:35 AM
[58]

Citation Linkdoi.org10.1021/bi500339j

Sep 30, 2019, 1:35 AM
[59]

Citation Linkwww.ncbi.nlm.nih.gov4053071

Sep 30, 2019, 1:35 AM
[60]

Citation Linkwww.ncbi.nlm.nih.gov24846409

Sep 30, 2019, 1:35 AM
[61]

Citation Linkwww.fda.gov“FDA approves new treatment for complicated urinary tract and complicated intra-abdominal infections”

Sep 30, 2019, 1:35 AM
[62]

Citation Linkadisinsight.springer.com“Cilastatin/imipenem/relebactam — AdisInsight”

Sep 30, 2019, 1:35 AM
[63]

Citation Linkwww.fda.gov“FDA approves new antibacterial drug”

Sep 30, 2019, 1:35 AM
[64]

Citation Linkcmr.asm.org“beta-Lactamases in laboratory and clinical resistance”

Sep 30, 2019, 1:35 AM
[65]

Citation Linkdoi.org10.1128/cmr.8.4.557

Sep 30, 2019, 1:35 AM
[66]

Citation Linkwww.ncbi.nlm.nih.gov172876

Sep 30, 2019, 1:35 AM
[67]

Citation Linkwww.ncbi.nlm.nih.gov8665470

Sep 30, 2019, 1:35 AM
[68]

Citation Linkwww.ncbi.nlm.nih.gov“Class D β-lactamases: a reappraisal after five decades”

Sep 30, 2019, 1:35 AM
[69]

Citation Linkdoi.org10.1021/ar300327a

Sep 30, 2019, 1:35 AM
[70]

Citation Linkwww.ncbi.nlm.nih.gov4018812

Sep 30, 2019, 1:35 AM
[71]

Citation Linkwww.ncbi.nlm.nih.gov23902256

Sep 30, 2019, 1:35 AM
[72]

Citation Linkwww.ncbi.nlm.nih.gov“NXL104 irreversibly inhibits the β-lactamase from Mycobacterium tuberculosis”

Sep 30, 2019, 1:35 AM
[73]

Citation Linkdoi.org10.1021/bi300508r

Sep 30, 2019, 1:35 AM
[74]

Citation Linkwww.ncbi.nlm.nih.gov3448018

Sep 30, 2019, 1:35 AM
[75]

Citation Linkwww.ncbi.nlm.nih.gov22587688

Sep 30, 2019, 1:35 AM
[76]

Citation Linkwww.ncbi.nlm.nih.gov“Can inhibitor-resistant substitutions in the Mycobacterium tuberculosis β-Lactamase BlaC lead to clavulanate resistance?: a biochemical rationale for the use of β-lactam-β-lactamase inhibitor combinations”

Sep 30, 2019, 1:35 AM
[77]

Citation Linkdoi.org10.1128/AAC.01253-13

Sep 30, 2019, 1:35 AM
[78]

Citation Linkwww.ncbi.nlm.nih.gov3837893

Sep 30, 2019, 1:35 AM
[79]

Citation Linkwww.ncbi.nlm.nih.gov24060876

Sep 30, 2019, 1:35 AM
[80]

Citation Linken.wikipedia.orgThe original version of this page is from Wikipedia, you can edit the page right here on Everipedia.Text is available under the Creative Commons Attribution-ShareAlike License.Additional terms may apply.See everipedia.org/everipedia-termsfor further details.Images/media credited individually (click the icon for details).

Sep 30, 2019, 1:35 AM